

$Utilização \ de \ Excel \ ^{TM} \ com \ IHM \ para \ monitorar \ o \ funcionamento \ de \ uma \ estação \\ pneumática \ com \ fins \ didáticos$

Alfredo de Carvalho Soares¹
Marco Rogério da Silva Richetto²

RESUMO

O objetivo deste trabalho é demonstrar a viabilidade da aplicação do EXCELTM em conjunto com um CLP (Controlador Lógico Programável) como software de monitoramento. A aplicação permite o enriquecimento das aulas práticas de eletro pneumática, integrando o controlador lógico a um sistema pneumático de furação (mesa XYZ), facilitando o aprendizado dos alunos, já que os mesmos podem monitorar e analisar o funcionamento do sistema em tempo real. Os recursos necessários para os testes práticos – CLP, sistema pneumático de furação e computadores com EXCELTM estão disponíveis nos laboratórios de pneumática da escola SENAI 3.01. Durante a execução do trabalho, pode-se visualizar e interagir com informações relevantes para o entendimento do funcionamento, inclusive com o monitoramento do diagrama de trajeto e passo, de acordo com a sequência programada, a alteração dos valores de temporizadores e contadores e das entradas e saídas em tempo real. Concluiu-se, portanto, que o EXCELTM pode ser utilizado como ferramenta virtual importante em escolas técnicas em que o ensino de pneumática e sistemas de controle for oferecido, já que o aplicativo é encontrado em grande parte dos computadores disponíveis, o que permite uma aplicação eficiente e com custo relativamente baixo, quando comparado a outras interfaces.

Palavras-chave: IHM, CLP, Automação, Mecatrônica

1. INTRODUÇÃO

A evolução da tecnologia e dos processos de manufatura vem obrigando as escolas de formação tecnológica a melhorar as condições de aprendizagem em seus laboratórios. Independente do nível de formação (técnico, graduação ou especialização), exige-se do formando conhecimentos que vão além da montagem e dimensionamento de circuitos, e os egressos desses cursos precisam entender o funcionamento, em tempo real, dos dispositivos enquadrados em sua área de formação.

Cursos direcionados a formação nas áreas que envolvem a manufatura, e como exemplo pode-se citar os cursos de mecânica, mecatrônica e automação, precisam ter laboratórios capazes de proporcionar aos alunos o entendimento de conceitos

¹ Graduado em Engenharia Mecânica (UNITAU) – Aluno no curso de pós graduação em Automação Industrial e Robótica (SENAI 3.01). e-mail: <u>alfcsoares@gmail.com</u>

² Mestre em Engenharia (UNITAU) - Docente no curso de pós graduação em Automação Industrial e Robótica (SENAI 3.01). e-mail: marichetto@yahoo.com.br

profundos sobre o que ocorre nos mais diversos tipos de dispositivos, sem suposições, mas com monitoramento durante o funcionamento.

Tanto o CLP, quanto o IHM, fazem parte do ambiente fabril e é necessário entender os conceitos de comunicação do CLP com os periféricos, tanto de sinais (fins de curso e sensores) como os de monitoramento (IHM, ou *software* supervisório).

Para trabalhar com IHM, é preciso ter o equipamento, um *software* de programação específico e treinamento específico para cada modelo ou, pelo menos, para cada fabricante diferente. Isso gera alto investimento e necessidade de atualização constante, tanto do *hardware* quanto do *software*.

Com relação ao *software* supervisório, há a possibilidade de se trabalhar com os programas para demonstração, mas estas versões limitam o uso de alguns recursos e o tempo de utilização, o que prejudica sua utilização como ferramenta para que o aluno tenha um primeiro contato com o supervisório e possa entender todas as ferramentas e possibilidades de aplicação.

Pensando nisso, o objetivo deste trabalho é mostrar a viabilidade de utilização do conceito de comunicação do CLP com o *software* Excel, de forma a programar e monitorar uma estação pneumática, aproveitando-se o fato do aplicativo estar instalado nos computadores dos laboratórios, fazendo-o funcionar como um supervisório.

2.DESENVOLVIMENTO

O dispositivo a ser monitorado durante os testes de software será um sistema de furação pneumático XYZ e um motor conforme mostra a figura 1.

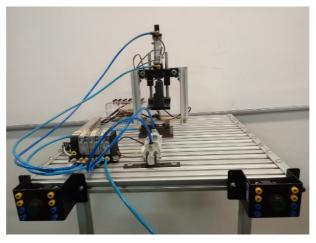


Figura 1: Sistema de furação

A elaboração do projeto de testes consiste em monitorar a sequência de movimentos (A+B+)(C+M+)C-(M-B-A-), onde o atuador "A" representa uma morsa, o atuador "B" a movimentação da morsa para a posição em que a peça será furada, o atuador "C" movimenta um motor "M". Após a ativação, deve ser feita uma contagem de 10 ciclos que emitirá um alerta para verificação da ferramenta, o *restart* deve ser dado via supervisório, utilizando o software Excel, através de um usuário cadastrado para este fim.

A sequência de acionamento, apresentada acima em sua forma algébrica, pode ser representada por uma sequência lógica. A programação será desenvolvida de forma a realizar a sequência representada pelo diagrama de trajeto e passo, bem como a monitoração do tempo pré-estabelecido, conforme figura 2.

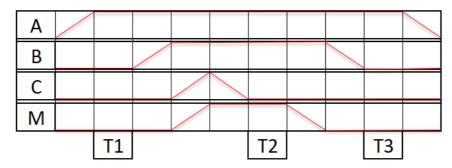


Figura 2: Diagrama de Trajeto e passo

2.1. Configuração da programação do CLP

O CLP utilizado é o modelo FC600 do fabricante FESTO e o *software* para programação o FST 4.21 (FESTO,2017). Para realizar a programação, é feita a listagem das entradas e saídas com relação ao manipulador. As entradas e saídas com suas funções foram configuradas conforme tabela 1.

Tabela 1: Entradas e saídas

Entradas	Descrição	Saídas	Descrição
I0.0	B1	O0.0	Eixo x
I0.1	B2	O0.1	Eixo y
I0.2	Y+	O0.2	Eixo z
I0.4	Y-	O0.3	Motor
I0.5	Z+	O0.4	Limite de Ciclos
I0.6	Z-	O1.0	Contador Zero
I1.0	Reset Contador	01.1	

Fonte: Elaborado pelo autor

Em seguida, é feita a relação das memórias auxiliares que, além de fazerem parte da programação, serão utilizadas como leitura e escrita pelo Excel. As memórias de leitura, conforme tabela 2, terão a função no Excel de somente visualização e as memórias de escrita, conforme tabela 3, serão ativadas pelo Excel, realizando a função de acesso remoto.

Tabela 2: Memórias de leitura

Memórias de leitura	Descrição
F0.1	Avança cilindro A - Morsa
F0.2	Avança cilindro C e liga Motor
F0.3	Recua cilindro C
F0.4	Recua cilindro B
F1.0	Avança cilindro B
F1.2	Recua cilindro A

Fonte: Elaborado pelo autor

Tabela 3: Memórias de escrita

Memórias de escrita	Descrição
FW10	Valor T1 Excel
FW20	Valor T2 Excel
FW30	Valor T2 Excel

Fonte: Elaborado pelo autor

Para finalizar a listagem, é feita a relação dos temporizadores e do contador, conforme tabela 4. Os *tags* com a letra "W" se referem ao bit de armazenamento.

Tabela 4: Contador

Endereços	Descrição	Endereços	Descrição
C1	Número de Ciclos	CW1	Contagem real do contador 1

Fonte: Elaborado pelo autor

2.2 Utilizando o software IPC Data Server

Antes de iniciar a configuração no Excel, deve-se realizar o *download* gratuito do *software* IPC Data Server no site da empresa FESTO (Plagemann, B; 2004). Após instalá-lo e executá-lo, abrirá a janela vista na figura 3. Conectar o CLP ao computador e clicar no menu *config*, clicar em FPC RS232 e na nova janela, como a da figura 4, clicar em *Config* relacionado ao FPC 1 (pode-se conectar até 04 CLPs). Na janela de configuração, ativar a opção *enable* e selecionar a porta de comunicação e clicar em OK. O CLP estará conectado ao computador. O modo IPC é utilizado quando se conectar o CLP via IP (conexão por rede serial).

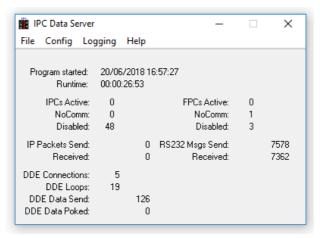


Figura 3: Software IPC Data Server

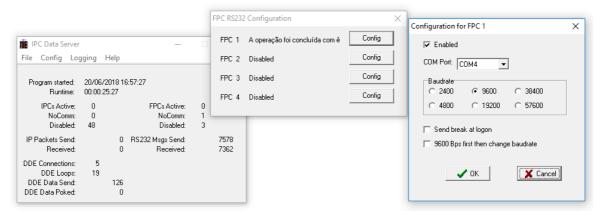


Figura 4: Janelas de configuração do IPC Data Server

2.3. Configuração do Microsoft Excel

No software do Excel, é preciso converter a descrição de alguns endereços. Esses endereços com a respectiva conversão são fornecidos no Help do software IPC Data Server. A tabela 5 apresenta a conversão de endereços.

Tabela 5: Tabela dos endereços no Excel

active	1 if communication is active
EW0 - EW255	Input words
E0.0 - E255.15	Input bits
AW0 - AW255	Output words
A0.0 - A255.15	Output bits
R0 - R255	Registers
TV0 - TV255	Timer preselects
MW0 - MW9999	Flagwords
M0.0 - M9999.15	Flag bits
STR0 - STR255	Strings (TCP/IP only !)

Fonte: IPC Data Server Online Help

Com o CLP comunicando com o IPC, é possível fazer a leitura pelo Excel. Para leitura do estado de uma entrada do CLP, digitar na célula do Excel:

=FPC_DATA|FPC_1!"endereço conforme figura 5"

Na figura 5, é mostrada parte da planilha com os valores a lidos.

ENTRADAS			
CLP IPC			
B1	10.0	0	
B2	10.1	0	
B+	10.2	0	
B-	10.6	0	
C+	10.4	0	
C-	10.5	0	
RESET	10.7	0	

SAÍDAS			
CLP IPC			
Α	0.00	1	
В	00.1	1	
С	00.2	0	
M	00.3	0	

Figura 5: Planilha Excel

Para escrever e enviar valores para uma memória do CLP deve-se criar uma macro e fazer um *link* entre a macro e o botão. Dentro da macro, digitar no *Visual Basic* o código:

Sub nome do botão()

Channel = Application.DDEInitiate("fpc_data", "fpc_1")

Application.DDEPoke Channel, Sheets("nome da planilha")

.Range("célula"), Sheets("nome da planilha") .Range("célula")

Application.DDETerminate Channel

End Sub

A figura 6 mostra o resultado do programa deste projeto.

Figura 6: Programa Visual Basic (no Excel)

3. Resultados

Com estas informações, foram feitas as planilhas dos temporizadores, do contador, bem como das memórias utilizadas, conforme figura 7. Na planilha de "ENTRADAS E SAÍDAS" pode-se modificar o tempo de cada etapa, em milissegundos, conforme figura 8.

TEMPOTOZADOR		
	IPC	
T1	1000	
T2	5000	
T3	5000	
CONTADOR		
	IPC	
C1	10	

MEMÓRIAS			
CLP	ACIONAMENTO	IPC	
F0.1	A+	0	
F1.2	A-	0	
F1.0	B+	0	
F0.4	B-	0	
F0.2	C+ M+	0	
F0.3	C-	0	
F1.1	M-	0	

Figura 7: Planilha Temporizadores, Contadores e Memórias do CLP

ENTRADAS			
	CLP	IPC	
B1	10.0	0	
B2	10.1	0	
B+	10.2	0	
B-	10.6	0	
C+	10.4	0	
C-	10.5	0	
RESET	10.7	0	

SAÍDAS			
	CLP	IPC	
Α	00.0	0	
В	00.1	0	
С	00.2	0	
М	00.3	0	

TEMPOTOZADOR		
	IPC	
T1	1000	
T2	5000	
T3	5000	

CONTADOR		
	IPC	
C1	10	

MEMÓRIAS		
CLP	ACIONAMENTO	IPC
F0.1	A+	0
F1.2	A-	0
F1.0	B+	0
F0.4	B-	0
F0.2	C+ M+	0
F0.3	C-	0
F1.1	M-	0

Figura 8: Tela de "ENTRADAS E SAÍDAS"

Utilizando os recursos oferecidos pelo Excel, como formatação condicional (OFFICE, 2015), por exemplo, foi criado um supervisório que monitora o passo em que se encontra o manipulador, a quantidade de passos apresentado no gráfico e o estado das memórias, conforme figura 9.

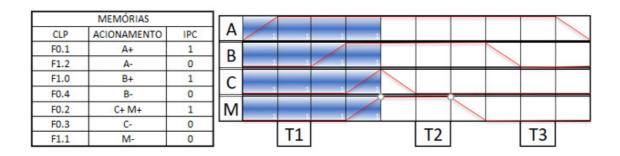


Figura 9: Estado das Memórias e Monitoramento

4. CONCLUSÃO

Mesmo com a ausência de uma IHM ou *software* supervisório é possível monitorar e modificar parâmetros de uma programação em linguagem *ladder*, utilizando o Microsoft Excel. Um supervisório facilita o controle de um processo ou monitoramento de um dispositivo, permitindo visualizar a posição em que se encontra o programa do CLP, atualizar o valor de temporizadores ou contadores sem a necessidade de realizar o *download* do programa no CLP, monitorar o valor da contagem do contador e, como foi feito neste artigo, monitorar a posição dos atuadores.

A proposta apresentada demonstra-se viável como alternativa a IHMs ou supervisórios para aplicações educacionais. A precisão e representação dos dados apresentados, via tabelas ou gráficos do EXCEL, permite ao aluno uma melhor compreensão dos eventos no momento em que ocorrem, facilitando sua compreensão

com relação ao controle e também com relação aos dispositivos apresentados para estudo.

REFERÊNCIAS

FESTO. In: Support Portal. Disponível em: https://www.festo.com/net/en-gb_gb/SupportPortal/default.aspx?q=fst&tab=4. Acesso em: 01 dezembro 2017.

OFFICE. In: Support Portal. Disponível em: https://support.office.com/pt-br/article/usar-fórmulas-com-formatação-condicional-fed60dfa-1d3f-4e13-9ecb-f1951ff89d7f. Acesso em: 01 dezembro 2017.

Plagemann, B – **FESTO TEXTBOOK – Automation Whit FST –** Alemanha, 2004. Disponível em < https://www.festo.com/net/SupportPortal/Files/324416/FST_2004-03_682300g1.pdf>. Acesso em: 01 dezembro 2017.